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ABSTRACT: Dendrites are equipped with a ple-
thora of voltage-gated ion channels that greatly enrich
the computational and storage capacity of neurons. The
excitability of dendrites and dendritic function display
plasticity under diverse circumstances such as neuromo-
dulation, adaptation, learning and memory, trauma, or
disorders. This adaptability arises from alterations in
the biophysical properties or the expression levels of
voltage-gated ion channels—induced by the activity of

neurotransmitters, neuromodulators, and second-mes-
senger cascades. In this review we discuss how this plas-
ticity of dendritic excitability could alter information
transfer and processing within dendrites, neurons, and
neural networks under physiological and pathological
conditions. ' 2005Wiley Periodicals, Inc. J Neurobiol 64: 100–115, 2005
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BACKGROUND

Plasticity of Neurons and Neural
Networks

The term neural plasticity comprises not only the for-
mation and storage of memories, but also such phenom-
ena as neuromodulation, sensory adaptation to environ-
mental changes, or even traumatic events and patholog-
ical conditions. Mechanisms contributing to neural
plasticity include rewiring of neuronal circuits, genera-
tion of new neurons, remodeling of dendrites, synaptic
plasticity, and plasticity of neuronal excitability (Martin
and Morris, 2002; Zhang and Linden, 2003).

Information flow between neurons within a neural
network is a complex process that involves the fol-
lowing (rather simplified) sequence of events: presy-
naptic release of neurotransmitter, transduction by

the postsynaptic side, synaptic integration, action
potential (AP) output, back-flow of information into
the dendritic arbors, and retrograde signaling towards
the presynapse. All these processes are shaped by the
intrinsic excitability of the neuron. As a result, plasti-
city of intrinsic excitability will alter the transfer,
processing, and storage of information within single
neurons and their associated neural networks (for
reviews, see Harris-Warrick and Marder, 1991;
Marder et al., 1996; Turrigiano and Nelson, 2000;
Giese et al., 2001; Daoudal and Debanne, 2003;
Zhang and Linden, 2003).

A Definition of Intrinsic Plasticity. Intrinsic plasti-
city is defined here as a modulation of either the func-
tional state or the expression level of ion channels in
the neuronal membrane, thereby altering the mem-
brane excitability (Hille 2001). The cellular locus of
this change will largely determine the outcome for
neuronal computation; for example, a change in the
excitability of the AP initiation zone (close to the
soma) globally modifies the efficacy of most synaptic
inputs to trigger an AP. Intrinsic plasticity confined to
a dendritic branch or module, on the other hand,
could alter the local integration and efficacy of only a
few (or even single) synaptic inputs. In addition to
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spatial considerations, time is a crucial factor deter-
mining the impact of intrinsic plasticity on neuronal
function. This intrinsic plasticity could transiently
and/or persistently tune the excitability of neurons
and neural networks, and thus contribute to the for-
mation of short- and long-term memory traces or the
emergence of pathological syndromes such as epilepsy.

Homeostatic Regulation of Neuronal Activity. The
intrinsic excitability of individual neurons plays an
important role in regulating the amount of input nec-
essary to evoke an action potential, the firing rate
and pattern, and, therefore, network dynamics.
Research on both invertebrate and vertebrate systems
has demonstrated the existence of homeostatic
changes in intrinsic excitability, which could stabilize
neuronal activity levels. In these studies, sustained
alterations in activity led to accompanying changes in
the expression of voltage-gated ion channels that
shape neuronal firing patterns (Turrigiano et al.,
1994, 1995; Desai et al., 1999; Golowasch et al,
1999; Nick and Ribera, 2000; Baines et al., 2001;
Aizenman et al., 2003). For example, in cultured neo-
cortical pyramidal neurons, blocking activity for
hours or days can lower the threshold of AP initiation
and increase the firing frequency in response to cur-
rent injections at the cell body (Desai et al., 1999).
These changes result from an upregulation of Naþ

channels and a downregulation of sustained Kþ

currents. Conversely, elevated activity levels result
in a homeostatic downregulation of AP output
through opposite modulations of the underlying
currents. In addition, neuronal firing properties can
also adapt in response to rapid changes in signaling
(Aizenman and Linden, 2000; Armano et al.,
2000; 0Ganguly et al., 2000; Egorov et al., 2002;
Nelson et al., 2003; Sourdet et al., 2003; Li et al.,
2004; Cudmore and Turrigiano, 2004; Misonou
et al., 2004; van Welie et al., 2004). For example, in
deep cerebellar nuclei neurons, brief high-frequency
synaptic activity induces a persistent increase in
intrinsic excitability within minutes of tetanization
(Aizenman and Linden, 2000). As a consequence,
the neurons display a lower AP threshold and an
increase in the number of APs in response to somatic
depolarization.

Compensatory homeostatic plasticity mechanisms,
including intrinsic plasticity, scaling of synaptic
strength, and changes in inhibition, ensure that a neu-
ron can operate in its optimal range by normalizing
the overall excitability, and promote network stability
(Spitzer, 1999; Stemmler and Koch, 1999; Abbott
and Nelson, 2000; Turrigiano and Nelson, 2000;
Marder and Prinz, 2002; Piedras-Renteria et al.,

2004). Without these stabilizing feedback mecha-
nisms, Hebbian plasticity or acute changes in intrinsic
plasticity could lead to a destabilization of postsynap-
tic firing, resulting in extremely high or low AP dis-
charge rates.

Intrinsic Plasticity Induced by Learning
Tasks

Studies on invertebrate and vertebrate organisms
have implicated changes in intrinsic excitability in
various learning tasks (reviewed in Giese et al., 2001;
Doudal and Debanne, 2003; Zhang and Linden,
2003). Early evidence linking behavioral training
with intrinsic plasticity derives from the pioneering
work by Alkon and colleagues on the nudibranch
mollusk, Hermissenda (Alkon et al., 1982; Alkon,
1984; Alkon et al., 1985). In these studies, classical
conditioning of the phototaxic response induced a
conditioned response, parallel with a long-lasting
(weeks) increase in the excitability of the photorecep-
tor cell. This intrinsic plasticity was expressed as an
increase in the number of APs evoked by either a
light-stimulus or somatic current injection, and
resulted from a second messenger-induced decrease
in transient A-type Kþ currents and Ca2þ-dependent
Kþ currents. Other studies that followed—associative
conditioning in the terrestrial snail Helix (Gainutdi-
nov et al., 1998) and in the marine mollusk Aplysia
(Antonov et al., 2001), operant conditioning in Aply-
sia (Brembs et al., 2002), as well as sensitization in
Aplysia (Cleary et al., 1998) and the medicinal leech
Hirudo (Burrell et al., 2001)—were all accompanied
by neuron type-specific increases in intrinsic excit-
ability. In contrast to sensitization, habituation of the
shortening response in Hirudo led to a decrease in
intrinsic excitability of the same neuron type.

In vertebrates, learning task-related changes in
intrinsic excitability have been reported in a number
of brain regions. Possibly the first evidence for intrin-
sic plasticity induced by behavioral training came
from research by Brons and Woody (1980). In their
studies, associative conditioning in cats resulted in a
persistent increase (enduring at least 28 days) in neu-
ronal excitability in the pericruciate sensorimotor cor-
tex, as revealed by intracellular recordings from con-
scious animals. In a different learning-task, trace eye-
blink conditioning in rabbits induced a transient (< 7
days) increase in excitability in the CA1 and CA3
region of the hippocampus, as confirmed by record-
ings from pyramidal neurons in hippocampal slices
following the training. Neurons from trained animals
display an increased AP discharge in response to
depolarizing current injection, and a reduced ampli-
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tude of the afterhyperpolarization (AHP; Disterhoft
et al., 1986; Coulter et al., 1989; de Jonge et al.,
1990; Moyer et al., 1996; Thompson et al., 1996). In
contrast to trace eye-blink conditioning, delay eye-
blink conditioning requires the cerebellar network
and leads to an enduring (> 30 days after training)
increase in intrinsic excitability spatially limited to a
defined microzone. Within this region, the dendrites
of Purkinje cells were more excitable, showing a
lower threshold for triggering spikes and a reduced
AHP [Table 1 and Fig. 1(B); Schreurs et al., 1997,
1998]. Operant conditioning, on the other hand, was
found to temporarily increase the excitability of layer
2 pyramidal neurons in piriform cortex for up to 5 to
7 days, and this has been suggested to enable rule
learning (Saar et al., 1998, 2001; reviewed in Saar
and Barkai, 2003). Additional evidence for a reduc-
tion of the AHP induced by learning is provided by a
recent study of spatial learning in a watermaze task
(Oh et al., 2003). Voltage-clamp recordings indicated
a reduction in one or more of the currents underlying
the AHP of CA1 pyramidal neurons in the dorsal but
not ventral hippocampus. A recent study of Pavlovian
conditioning in the amygdala further supports the
idea that changes in excitability are linked to synaptic
plasticity or the formation of memory (Rosenkranz
and Grace, 2002). In vivo intracellular recordings
from anesthetized rats revealed that repeated pairings
of an odor with a footshock led to increases in synap-
tic strength and in neuronal excitability. These studies
support a role for intrinsic plasticity in learning and
memory, and at least some of this plasticity likely
occurs in the dendrites.

Active Properties of Dendrites Are
Malleable

Dendrites are elaborate structures that collect thou-
sands of synaptic inputs and integrate them in a com-
plicated and incompletely understood process to trig-
ger an AP output of the neuron (Spruston et al., 1999;
Reyes, 2001; Gulledge et al., p. 75, this issue). Impor-
tant determinants of synaptic integration are the mor-
phology, as well as the passive and active properties
of the dendritic arbor. Dendrites owe their active
properties to the presence of numerous voltage-
dependent ion channels, which greatly increase the
computational complexity of single neurons. Electro-
physiological recordings and imaging studies have
revealed the existence of voltage-gated Naþ, Ca2þ,
and Kþ channels in the dendrites and even in the den-
dritic spines (Magee, 1999; Reyes, 2001; Tsay and
Yuste, 2004). The impact of these channels on synap-

tic integration depends on the amplitude, time course,
and spatial location of the synaptic signals, as well as
the distribution and the densities of the channels.
Strongly synchronized or clustered synaptic inputs, or
glutamatergic stimulation can lead to the generation
of Naþ and/or Ca2þ spikes in hippocampal and neo-
cortical dendrites (Schiller et al., 1997; Schwindt and
Crill, 1997a; Golding and Spruston, 1998; Kamondi
et al., 1998; Helmchen et al., 1999; Frick et al., 2001;
Larkum and Zhu, 2002). In addition, in some neuron
types APs initiated in the axo-somatic region actively
back-propagate into the dendritic tree (Johnston
et al., 1996; Yuste and Tank, 1996; Stuart et al.,
1997). Both back-propagating APs (bAPs) and den-
dritically initiated spikes can release the Mg2þ block
of NMDA receptors as well as evoke dendritic cal-
cium influx through voltage-gated Ca2þ channels,
and have been shown to be involved in the induction
of synaptic plasticity at proximal and distal synapses,
respectively (Magee and Johnston, 1997; Markram
and Sakmann, 1997; Golding et al., 2002).

Modulation of Dendritic Voltage-Gated Chan-
nels. Most of the voltage-gated channels found in
dendrites can be modulated by a variety of neuro-
transmitters, modulators, and second messenger sys-
tems. Modulation can affect channel properties such
as the voltage-dependence of activation and inactiva-
tion, gating, and the probability of opening, as well as
the expression levels of these channels in the mem-
brane. Consequently, the intrinsic excitability of den-
drites can be modified in numerous ways. Moreover,
many of these signaling pathways are triggered by
activity patterns that are known to occur in vivo. In
addition, some of these activity patterns will also trig-
ger changes in synaptic strength, raising the possibil-
ity that both synaptic and intrinsic plasticity could be
induced in parallel, and act synergistically to promote
the formation of memories.

Naþ Channels. The modulation of voltage-
dependent Naþ channels (for review, see Cantrell and
Catterall, 2001) has important consequences for den-
dritic and overall neuronal excitability. A broad array
of neurotransmitters—monoamines, peptides, ace-
tylcholine, glutamate—have been shown to alter
Naþ channel function in neurons, primarily via phos-
phorylation (through protein kinases A and C) and
dephosphorylation (e.g., calcium-regulated phospha-
tase calcineurin and protein phosphatase 2A) of the
pore-forming ! subunits.

Phosphorylation of Naþ channels can result in
smaller Naþ currents (Cantrell and Catterall, 2001),
or decrease their activation by shifting the voltage-
dependence of activation to more depolarized poten-
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tials (Gasparini and Magee, 2002), resulting in a
decrease in neuronal excitability. Other studies report
either an increase (Carr et al., 2003), or a decrease
(Colbert and Johnston, 1998) in the slow inactivation
of Naþ channels (Colbert et al., 1997; Jung et al.,
1997), which could modulate the frequency-depend-
ent attenuation of the bAP amplitude during a train.
Finally, modulation may differentially affect transient
or persistent Naþ currents (Maurice et al., 2001).

Ca2þ Channels. Activation of voltage-gated
Ca2þ channels in the dendrites provides additional
inward current and further increases the excitability
of the dendrites. Importantly, these channels provide
a pathway for Ca2þ influx, thereby linking electrical
activity and intracellular signaling cascades.

Ca2þ channels can be modulated by G proteins,
phosphorylation, and, in a negative feedback loop, by
Ca2þ itself (reviewed in Catteral, 2000). In hippo-
campal neurons, activation of metabotropic gluta-
mate, GABAB, somatostatin, serotonin, or adenosine
receptors has been reported to inhibit dendritic Ca2þ

channels (Chen and Lambert, 1997; Kavalali et al.,
1997). The largest impact of these G-protein–medi-
ated mechanisms is on dendritic N-type Ca2þ chan-
nels. In cultured mitral cells, norepinephrine (via !2-
adrenoceptor activation) effectively reduced dendritic
Ca2þ influx evoked by depolarization (Bischofberger
and Schild, 1995), presumably by inhibiting N-type
Ca2þ channels. Based on somatic studies, "-adreno-
ceptor activation would be expected to increase Ca2þ

influx through certain types of dendritic Ca2þ chan-
nels (Fisher and Johnston, 1990; Hoogland and Sag-
gau 2004).

Kþ Channels. Voltage-dependent Kþ channels
are the primary regulators of dendritic excitability.
Delayed rectifiers, M-, D-, A-type, and G protein-
activated inward rectifying Kþ (GIRK) channels have
all been found in the dendrites of CA1 and/or neo-
cortical pyramidal neurons (Hoffman et al., 1997;
Takigawa and Alzheimer, 1999; Bekkers, 2000;
Korngreen and Sakmann, 2000; Chen and Johnston,
2004).

Phosphorylation plays a key role in modulation of
Kþ channels by altering the amplitude, kinetics, or
channel expression in the plasma membrane. For
example, Kv4.2, the major subunit contributing to
dendritic A-type Kþ currents in CA1 pyramidal neu-
rons, has phosphorylation sites for PKA, PKC,
MAPK, and CaMKII (reviewed in Schrader et al.,
2002). Activation of PKA, PKC, and MAPK by neu-
romodulators [noradrenaline, dopamine, acetylcho-
line, glutamate (via mGluRs)] decreases the activity
of these dendritic A-type Kþ channels (Hoffman and
Johnston, 1998, 1999; Yuan et al., 2002). ActivationT
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Figure 1 Dendritic intrinsic plasticity induced by behavioral tasks, learning tasks, and postsy-
naptic activity. (A) The frequency-dependent decline of dendritic bAP amplitude is reduced with
experience. Spikes are recorded in vivo using extracellular electrodes in the CA1 region of the hip-
pocampus. Blue trace, the amplitude of bAPs progressively declines during a train of spikes. Red
trace, experience in an environment leads to a reduction in the degree of this attenuation, suggest-
ing an increase in the effectiveness of back-propagation. (B) Classical conditioning increases den-
dritic excitability of Purkinje cells in rabbits. Dendritic recordings were made from cerebellar slices
that were taken 1 month after 3 days of classical conditioning (red trace) or unpaired stimulus pre-
sentation (blue trace). The threshold to evoke local dendritic Ca2þ spikes in Purkinje cells is lower
in slices from animals that received classical conditioning. (C) The frequency-dependent decline of
dendritic bAP amplitude is reduced following depolarization and Ca2þ influx. Dendritic recordings
were made from CA1 pyramidal neurons in mouse hippocampal slices. Blue trace, control. Red
trace, after a series of depolarizing current injections (and Ca2þ influx) into the dendrite, the AP
back-propagation is persistently improved. (D) Postsynaptic activity depresses bAP-evoked Ca2þ

influx into individual spines in CA1 pyramidal neurons. Blue traces, Ca2þ transients evoked by a
single bAP in two spines in control. Red traces, brief trains of APs persistently reduced this Ca2þ

influx through R-type Ca2þ channels in some spines (S1) but not in the parent dendrite or neighbor-
ing spines (S2), suggesting that intrinsic plasticity can be restricted to individual spines. [The illus-
trations were adapted from (A) Quirk et al., 2001; (B) Schreurs et al., 1998; (C) Tsubokawa et al.,
2000; and (D) Yasuda et al., 2003].

104 Frick and Johnston



of CaMKII, on the other hand, seems to alter their
surface expression (Varga et al., 2004). Phosphoryla-
tion and dephosphorylation of delayed rectifiers
(Kv2.1 in neocortex and hippocampus) can affect
their localization and voltage-dependent activation
properties (Misonou et al., 2004). GIRK channels are
activated by hyperpolarizations and their activation is
increased by the neuromodulators adenosine and
serotonin, and by GABAB receptor activation
(Andrade et al., 1986). M-type Kþ channels can be
inhibited by synaptically released acetylcholine via
activation of muscarinic receptors (Gähwiler and
Brown, 1985; Madison et al., 1987). Effective modu-
lation of voltage-gated Kþ channels can also occur
through membrane phospholipids and their metabo-
lites (Ramakers and Storm, 2002; Colbert and Pan,
1999). A recent study (Oliver et al., 2004) of
recombinant Kþ channels provided evidence that
phosphoinositides can convert transient channels into
delayed rectifiers, while arachidonic acid and ananda-
mide conferred rapid voltage-dependent inactivation
into non-inactivating channels.

H Channels. In the dendrites of several neuron
types (hippocampal CA1 pyramidal neurons, neocort-
ical pyramidal neurons, and cerebellar Purkinje cells)
membrane hyperpolarizations evoke inward currents
via h channels that are slowly activating and deacti-
vating and virtually non-inactivating (Häusser and
Clark, 1997; Schwindt and Crill, 1997b; Magee,
1998; Stuart and Spruston, 1998). These h channels
have a strong impact on the firing properties of neu-
rons and synaptic integration (Pape, 1996; Magee,
1999; Robinson and Siegelbaum, 2003; Shah et al.,
2004).

The activation properties of Ih are very sensitive to
intracellular concentrations of cAMP and cGMP
(Pape, 1996). Increases in the levels of cAMP and
cGMP (such as via "-adrenoceptor activation or
application of nitric oxide) shift the voltage depend-
ence for activation of Ih towards more depolarized
potentials, enhancing channel activation at resting
membrane potentials. Conversely, a decrease in
cyclic nucleotide levels has the opposite effect.

Relative Densities of Inward and Outward Cur-
rents. Depending on the type of channel, activation
of these conductances can either enhance or dampen
the integration and propagation of dendritic signals.
Consequently, the relative densities of inward (Naþ

and Ca2þ) and outward (Kþ) currents located within
the membrane have a profound impact on the excit-
ability of the dendritic membrane (Magee, 1999;
Reyes, 2001). This ratio can vary across the dendritic
arbor due to non-uniform distributions of the chan-

nels and modulation. For instance, in hippocampal
CA1 pyramidal neurons there is an increase in A-type
Kþ channels with distance from the soma (Hoffman
et al., 1997). Similarly, in CA1 and neocortical pyra-
midal neurons, the densities of Ih increase steeply
with distance, strongly influencing membrane proper-
ties and synaptic integration in the distal dendrites
(Magee, 1998; Williams and Stuart, 2000; Berger
et al., 2001; Lorincz et al., 2002). An alternative
means of altering the balance of inward and outward
currents is via differences in their functional state (for
recent review see Reyes, 2001). In fact, Naþ, A-type
Kþ, N-type Ca2þ, and h channels show different
properties in the distal versus proximal dendrites, pre-
sumably as a consequence of gradients in second
messenger-systems (Bischofsberger and Schild,
1995; Hoffman et al., 1997; Colbert and Johnston,
1998; Magee, 1998).

Modifications of dendritic channel properties or
densities via neuromodulator-induced activation of
intracellular cascades are potential forms of intrinsic
plasticity. However, an important question is how
does plasticity of dendritic excitability contribute to
the computation and storage of information in den-
drites, neurons, and neural networks?

INTRINSIC PLASTICITY OF DENDRITES

Plasticity of Action Potential
Back-Propagation

As mentioned above, in many neuron types APs
travel not only in a forward direction along the axon,
but also back into the dendrites (Johnston et al., 1996;
Yuste and Tank, 1996; Stuart et al., 1997). These den-
dritic bAPs have been recorded in vitro as well as in
vivo (Buzsaki et al., 1996; Helmchen et al., 1999),
and have been implicated in spike-timing–dependent
plasticity (STDP; Magee and Johnston, 1997; Mark-
ram et al., 1997; Linden, 1999; Sourdet and Debanne,
1999; Bi and Poo; 2001, Sjöstrom and Nelson, 2002).
Moreover, the coincidence of bAPs with distal synap-
tic input can facilitate the initiation of dendritic Ca2þ

spikes, which in turn evoke somatic AP bursts (Lar-
kum et al., 1999). The mode of AP back-propagation
can be either fully regenerative, decremental, or pas-
sive, and depends upon the geometry (Vetter et al.,
2001; Schaefer et al., 2003) and intrinsic excitability
of the dendritic tree (Migliore and Shepherd, 2002).
This excitability is highly state dependent and modifi-
able by factors such as neuromodulation, inhibitory
or excitatory synaptic input, to name a few. In hippo-
campal and neocortical pyramidal neurons, bAP

Plasticity of Dendritic Excitability 105



trains are characterized by a frequency-dependent
decline in the dendritic spike amplitude, progres-
sively limiting their dendritic invasion (Andreasen
and Lambert, 1995; Callaway and Ross, 1995; Sprus-
ton et al., 1995; Stuart et al., 1997). This property is
voltage dependent and can be partly attributed to the
slow inactivation of dendritic Naþ channels that lasts
seconds (Colbert et al., 1997; Jung et al., 1997). In
contrast to single bAPs, which mostly activate rapid
conductances, spike trains will activate, and conse-
quently be shaped by both fast and slow conductan-
ces, providing additional targets for modulation.
Overall, intrinsic excitability along the dendritic
arbor has a strong impact on the spatial and temporal
profile of AP back-propagation and its associated
Caþ influx.

Evidence that activity can increase the effective-
ness of dendritic AP back-propagation may be found
in a study by Tsubokawa and colleagues [see Table 1
and Fig. 1(C); Tsubokawa et al., 2000]; strong depo-
larization of the dendrites of CA1 pyramidal neurons
led to a persistent reduction in the attenuation of
bAPs within trains. This form of activity-dependent
plasticity required an increase in [Ca2þ] in the apical
dendrite, and was mediated by the activation of
CaMKII. In vivo, the modulation of dendritic ion
channels, and consequently back-propagation, may
occur with behavioral experience. In a study by Quirk
and coworkers using freely behaving animals, the
degree of AP attenuation recorded extracellularly in
rat hippocampus was reduced by an animal’s experi-
ence within a particular environment [see Table 1 and
Fig. 1(A); Quirk et al., 2001]. This alteration
depended on the activation of NMDA receptors, sug-
gesting the engagement of plasticity mechanisms dur-
ing behavior. Due to the infancy of this field, many
questions remain: for example, can this form of plas-
ticity be triggered by activity patterns that are known
to induce LTP? Is it input-specific and localized with
respect to the LTP induction site? Which channels
are modulated to cause this change in conductivity?
We recently addressed some of these issues using
dendritic recordings and Ca2þ imaging combined
with long-term plasticity studies in CA1 pyramidal
neurons [Table 1 and Fig. 2(B); Frick et al., 2004].
Dendritic branches that received bursts of synaptic
input at theta frequency, properly timed with bAPs,
displayed not only a long-term potentiation (LTP) of
synaptic strength, but also a persistent increase of
intrinsic excitability. As a result, the back-propaga-
tion of APs and the influx of their associated Ca2þ

signals were enhanced in a spatially restricted man-
ner. Further analysis revealed a hyperpolarized shift
in the inactivation curve of A-type Kþ channels in

this dendritic region, thereby reducing their availabil-
ity for activation. This reduction of IA would remove
some of the restraints for AP back-propagation (Hoff-
man et al., 1997; Frick et al., 2003). In the distal den-
drites, this increased excitability may switch the AP
back-propagation from a passive to an active one
(Magee and Johnston, 1997; Stuart and Häusser,
2001; Bernard and Johnston, 2003). Similarly, differ-
ences in the ratio of inward-to-outward currents in
the distal dendrites of CA1 pyramidal neurons have
been suggested to confer strong or weak back-propa-
gation in separate neuron populations (Golding et al.,
2001). Another, even more localized form of intrinsic
plasticity has been reported by Yasuda and colleagues
[2003; Table 1 and Fig. 1(D)]. In this study, short
trains of bAPs depressed the bAP-evoked Ca2þ influx
through R-type Ca2þ channels in individual spines,
but did not affect the channels in the parent dendrites
or neighboring spines. This suggests that the bAP
amplitude itself was not modified, but that intrinsic
plasticity can be focused to the scale of a single synapse.

Together these studies promote the idea that the
back-propagation of APs is not a fixed entity, but
instead is malleable by the recent activity of the neu-
ron. Modulation of bAPs during specific activity pat-
terns in vitro or during behavior in vivo would be
expected to affect Ca2þ signals and STDP differently
across the dendritic arbors (Magee and Johnston,
1997; Sourdet and Debanne, 1999; Mainen, 1999; Bi
and Poo, 2001; Sjöström and Nelson, 2002; Wata-
nabe et al., 2002).

Plasticity of Dendritic Integration

The active properties of dendrites play an important
role in synaptic integration. In particular Naþ, A-type
Kþ, T-type Ca2þ, and h channels can all influence
and/or be influenced by subthreshold EPSPs (for
reviews, see Magee, 1999; Reyes, 2001). Intrinsic
plasticity of the dendrites could therefore alter the
Ca2þ influx into spines, the summation of synaptic
potentials, the detection of coincident inputs, and the
pairing of synaptic potentials with AP output
(Häusser and Mel, 2003).

The pioneering work performed by Bliss and
Gardner-Medwin (1973) taught us that tetanic stimu-
lation in the hippocampus can induce LTP as well as
increase the propensity of a neuron to fire APs in
response to a given EPSP—a phenomenon termed
EPSP-to-spike potentiation (E-S potentiation; for
reviews, see Daoudal and Debanne, 2003; Zhang and
Linden, 2003). Some subsequent studies attribute E-S
potentiation to plasticity of dendritic conductances,
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Figure 2 Dendritic intrinsic plasticity induced by correlated pre- and postsynaptic activity, and
by epilepsy. (A) The induction of LTP is accompanied by improved spatial summation of EPSPs.
Recordings were made from the soma of CA1 pyramidal neurons. The measured summation of
EPSPs, evoked by synchronous stimulation of two different pathways (P1 and P2), resulted in sub-
linear summation when compared to the calculated summation (sum of separate EPSPs). Blue
trace, measured summation in control. Red trace, the spatial summation is increased following the
induction of LTP at P1 (arrows), suggesting a change in active conductances. (B) The excitability
of a localized dendritic module increases following the induction of LTP. Changes were measured
using dendritic recordings combined with Ca2þ imaging in CA1 pyramidal neurons. Blue traces,
control. Red traces, after LTP induction (arrows), a region of increased dendritic excitability exists
surrounding the potentiated synapses. Top, LTP of synaptic strength. Second row, the activation of
A-type Kþ channels is inhibited in this region. This is associated with a persistent and localized
enhancement of AP back-propagation (third row), and of Ca2þ influx triggered by the bAP (fourth
row), suggesting that intrinsic plasticity can be restricted to dendritic branches. (C) AP back-propa-
gation is enhanced in a pilocarpine model of temporal lobe epilepsy (TLE). Recordings were made
from the dendrites of CA1 pyramidal neurons in hippocampal slices. Blue trace, in sham animals,
the bAP amplitude is small in the distal dendrites. Red trace, in slices taken from epileptic animals,
the bAP amplitude was strongly increased, suggesting a modification of the ratio of inward to out-
ward current in the dendrites. [The illustrations were adapted from (A) Wang et al., 2003; (B) Frick
et al., 2004 and Häusser, 2004; and (C) Bernard et al., 2004].
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further supporting the idea that activity patterns that
induce LTP may also trigger intrinsic plasticity. For
example, current-source density analyses have dem-
onstrated a shift of current sinks into the dendrite fol-
lowing LTP induction, indicating an increase in the
activation of voltage-dependent channels in the den-
drites (Taube and Schwarzkroin, 1988a; Vida et al.,
1995). This conclusion has been verified more
directly using dendritic recordings (Taube and
Schwarzkroin, 1988b). As mentioned previously,
one important issue concerns the spatial extent of
intrinsic plasticity with respect to the dendritic
compartment that receives the potentiated synaptic
inputs. In CA1 pyramidal neurons, correlated pre-
and postsynaptic activity that induced LTP or
LTD also produced persistent bidirectional changes
in the spatial summation of neighboring inputs
along the apical dendrite [Table 1 and Fig. 2(A);
Wang et al., 2003]. The authors proposed that modifi-
cations of dendritic h channels and NMDA receptors
underlie this altered dendritic integration. Using
dendritic recordings and Ca2þ imaging, it has been
possible to demonstrate an increase in excitability
that was spatially restricted to the dendritic subcom-
partment that received the potentiated synaptic input
(Johnston et al., 2003; Frick et al., 2004). This was
expressed as an altered shape of the EPSPs (Frick
et al., 2002), an increase in bAPs and in their associ-
ated Ca2þ signal, and a reduction in the A-type Kþ

current. Because this current has a dampening influ-
ence on dendritic excitability (Hoffman et al., 1997;
Bekkers, 2000), such modulation would be expected
to directly increase the amplitude and summation of
EPSPs, and to improve the impact of other inward
currents (Naþ and Ca2þ channels) on EPSP integra-
tion. These changes in dendritic excitability are likely
to affect the generation of dendritic Naþ and/or Ca2þ

spikes (Andreasen and Lambert, 1995; Golding and
Spruston, 1998; Magee and Carruth, 1999). This form
of plasticity may also have behavioral significance;
for example, dendritic recordings from Purkinje cells
in cerebellar slices from rats that underwent delay
eye-blink conditioning demonstrate a reduced thresh-
old for dendritic calcium spike initiation (Schreurs
et al., 1997, 1998).

Together, these studies indicate that synaptic inte-
gration is dependent on the prior activity of the neu-
ron, and that some forms of intrinsic plasticity can
be induced concomitantly, and function synergisti-
cally with changes in synaptic strength. Spatially
restricted forms of intrinsic plasticity (see also
Yasuda et al., 2003) may be accompanied or coun-
terbalanced by more global changes in excitability to
keep the neuron in its optimal operating range

(Stemmler and Koch, 1999; Fricker and Johnston,
2001; Turrigiano and Nelson, 2000; Häusser and
Mel, 2003).

Intrinsic Plasticity and Epilepsy

In addition to physiological activity patterns, patho-
logical conditions such as epileptic activity, chronic
stress, drug abuse, and dementia can lead to altera-
tions in neuronal excitability. In this section, we focus
on changes in dendritic excitability occurring in
response to various experimental models of epilepsy.
In these models, the activity of various serine-threo-
nine and tyrosine kinases is upregulated (Chen et al.,
1992; Garrido et al., 1998), potentially leading to a
modulation of a number of voltage-gated Naþ, Kþ,
and Ca2þ channels in the soma and dendrites. How-
ever, it should be noted that the activation of protein
kinases and phosphatases, albeit a powerful mechanism,
is not the lone factor altering intrinsic excitability.

In experimental models of epilepsy, modulation of
ion channels has been reported (Chen et al., 2001; Su
et al., 2002). In the pilocarpine model of chronic tem-
poral lobe epilepsy (that mimics many aspects of the
human disorder), an acquired channelopathy of A-
type Kþ channels in CA1 pyramidal neurons of rats
was recently reported [Table 1 and Fig. 2(C); Bernard
et al., 2004]. This A-type Kþ current was reduced
due to a partial loss of the underlying Kv4.2 channel
subunits, and to the modification of the remaining
channels by ERK phosphorylation. As a result, the
dendritic excitability of CA1 pyramidal neurons was
increased, thereby enhancing the back-propagation of
APs. In the absence of compensatory mechanisms, an
increased Ca2þ influx from larger bAPs and an
enhanced synaptic integration would be expected to
occur as well (Hoffmann et al., 1997; Ramakers and
Storm, 2002; Frick et al., 2004). The same experi-
mental model of epilepsy has been found to cause a
large fraction of CA1 pyramidal neurons to convert
from regular firing to a burst-firing mode (Sanabria
et al., 2001). Burst-firing is a biophysical property of
neurons that likely involves the activation or de-/inac-
tivation of somatic and dendritic voltage-gated con-
ductances such as Naþ, Ni-sensitive Ca2þ, A-type
Kþ, or D-type Kþ channels (Golding et al., 1999;
Magee and Carruth, 1999; Jung et al., 2001), suggest-
ing that epilepsy causes a modulation of these chan-
nels. This switch to a bursting mode will result in a
strong alteration of the input–output function of indi-
vidual neurons, and therefore augment the output
from the hippocampal networks (Lisman, 1997).
Bursting neurons could function as pacemakers in the
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generation of epileptiform activity in the acute and
chronic stages of the disorder (Sanabria et al., 2001).

In a kainate model of chronic temporal lobe epi-
lepsy, Misonou and colleagues show that seizure
activity modulates Kv2.1 channels in vivo (Misonou
et al., 2004). Kv2.1 channels, which mediate delayed
rectifier Kþ currents, are typically expressed in large
clusters on the somata and proximal dendrites of hip-
pocampal and neocortical pyramidal neurons. Seizure
activity abolished this clustered organization and
decreased the phosphorylation state of Kv2.1 chan-
nels, thereby presumably altering their biophysical
properties and their effectiveness in controlling mem-
brane excitability. Shah and colleagues (2004), in the
kainate model of acute epilepsy, recently demon-
strated a reduction of Ih in dendrites of layer III neu-
rons in the entorhinal cortex. These and other studies
thus suggest that both acute and chronic changes in
dendritic ion channels may play an important role in
the development of seizure disorders.

CONSEQUENCES OF INTRINSIC
PLASTICITY

Does Intrinsic Plasticity Play a Role in
Learning and Memory?

A prerequisite for a long-term memory mechanism is
the persistence of information storage (Dudai, 2002).
Several invertebrate and vertebrate studies link
enduring changes in neuronal excitability to specific
learning tasks (see Intrinsic Plasticity Induced by
Learning Tasks; Brons and Woody, 1980; Alkon
et al., 1982; Alkon, 1984; Alkon et al., 1985;
Schreurs et al., 1997, 1998). The conclusion from
these studies is that intrinsic plasticity could, in some
learning paradigms, fulfill the criterion of persistence.

An alternative interpretation is that intrinsic plasti-
city does not constitute the engram itself, but instead
plays a permissive, or supportive role in establishing
memory traces (Zhang and Linden, 2003). Several
arguments attest to this view: First, some learning
tasks (e.g., trace eye-blink conditioning; Disterhoft
et al., 1986; Coulter et al., 1989; de Jonge et al.,
1990; Moyer et al., 1996; Thompson et al., 1996)
might increase the excitability of a large fraction of
neurons (> 50%) within the network involved in the
learned task. This renders the storage of specific
memories in the functional state of channels unlikely,
and rather points to a role of intrinsic plasticity in
enhancing the overall excitability of this particular
network to improve learning of the specific task. Sec-
ond, while learning tasks typically produce enduring

memories, some forms of intrinsic plasticity may be
temporary (hours to days). This has been shown for
trace eye-blink conditioning in the hippocampus
(Disterhoft et al., 1986; Coulter et al., 1989; de Jonge
et al., 1990; Moyer et al., 1996; Thompson et al.,
1996), operant conditioning in the piriform cortex
(Saar et al., 1998, 2001), and Pavlovian conditioning
in the amygdala (Rosenkranz, personal communica-
tion). An increased neuronal excitability could thus
promote other activity-dependent modifications (e.g.,
synaptic plasticity) during the same time window
(Moyer et al., 1996; Saar and Barkai, 1998; Rose-
nkranz and Grace, 2002). This permissive, or suppor-
tive function of intrinsic plasticity has also been
implicated in savings and rule learning (Brons and
Woody, 1980; Saar and Barkai, 2003; Zhang and Lin-
den, 2003). Rule learning is defined here as the ability
to acquire new memories in a more efficient and rapid
manner following learning of similar tasks. For
instance, in an operant conditioning task, rats are
more capable of discriminating between pairs of
odors once they have learned the discrimination task
for a first pair. This improved learning persists for 5
to 7 days and correlates well with a temporary
decrease in the postburst amplitude of the AHP in
pyramidal neurons of the piriform cortex (reviewed
in Saar and Barkai, 2003). Without further training,
the AHP amplitude returns to control values and rats
no longer discriminate more efficiently between new
odor pairs. However, the behavioral memory for the
initial discrimination is not impaired. Evidence for a
role of intrinsic plasticity in savings has been found
following associative conditioning in cats (Brons and
Woody, 1980). When the conditioned response
was extinguished by repeated presentations of the
conditional stimulus by itself, the increase in excit-
ability was not abolished. In addition, retraining
resulted in a faster rate of learning of the conditioned
response, suggesting a role for intrinsic plasticity
in this process.

Could Intrinsic Plasticity Increase the
Storage Capacity?

Another distinctive attribute for a cellular memory
mechanism is the input- or synapse-specificity of
information storage. Long-term changes in synaptic
strength (LTP, LTD) are computationally appealing
models for memory storage because they allow syn-
apse-specific changes among a large number of
inputs. In this view, the potential storage capacity of
a neuron is large, because information can be stored
independently in every synapse, for example, in the
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order of 104 per neuron (for CA1 or neocortical pyra-
midal neurons; Mel, 1999; Poirazi and Mel, 2001).
Whether intrinsic plasticity can increase or decrease
the storage capacity, or modify the quality of the stor-
age of information will primarily depend on the loca-
tion and spatial restriction of this plasticity. Consider
a modulation in the region of the AP initiation site; in
this scenario, the efficacy of the majority of synapses
to contribute to neuronal AP output may be altered,
leading to a more global regulation of activity levels.
This mechanism would likely dramatically lower the
storage capacity of a neuron. In contrast, intrinsic
plasticity could be spatially restricted to the scale of
dendritic subcompartments, or even to single synaptic
connections (Johnston et al., 2003; Yasuda et al.,
2003; Frick et al., 2004). Theoretical studies suggest
that this would provide the neuron with an additional
tier of regulation, possibly increasing the storage
capacity (Mel, 1999; Poirazi and Mel, 2001). Infor-
mation stored in channels within a dendritic region
larger than a single synapse, but smaller than the
whole dendrite, would alter the computation per-
formed by this module and the quality of the stored
information (Poirazi et al., 2003). Some forms of
memory, such as declarative memory, may benefit by
the high degree of specificity conferred by plasticity
of a single synapse. Other forms, such as nondeclara-
tive memory, may benefit from the relative nonspeci-
ficity of intrinsic plasticity of a dendritic module
(Zhang and Linden, 2003).

Dendritic Excitability as a Substrate for
Metaplasticity?

The implications of intrinsic plasticity in savings
and rule learning’in behavioral learning tasks were
discussed above. On a cellular level, an important
question is how does intrinsic plasticity in the den-
drites prime the neuron to undergo further plasti-
city, a phenomenon referred to as metaplasticity
(Abraham and Bear, 1996). Synaptic plasticity is
largely a dendritic feature, because the integrative
properties of dendrites provide the basis for proper-
ties such as associativity and cooperativity between
synaptic inputs (Mainen, 1999; Sjöstrom et al.,
2001; Häusser and Mel, 2003; Poirazi et al., 2003).
Therefore, plasticity of dendritic excitability has
important consequences for the computational
capacity of the dendrites as well as for the rules
that govern synaptic plasticity. As discussed above,
behavioral learning, pathological conditions such as
epilepsy, or activity can trigger alterations of vari-
ous dendritic conductances. Such changes will mod-

ulate the computational capabilities of the dendrites,
modifying the amount of associativity and coopera-
tivity of synaptic inputs necessary to induce synap-
tic plasticity. Furthermore, short trains of bAPs
have been demonstrated to induce an enduring
depression of R-type Ca2þ channels in individual
spines, thereby inhibiting the induction of subse-
quent synaptic plasticity (Yasuda et al., 2003). In
addition, the important link between bAPs and the
induction of associative plasticity renders the tuning
of AP back-propagation a crucial substrate for
metaplasticity. For example, an enhanced dendritic
invasion by bAPs (Tsubokawa et al., 2000; Quirk
et al., 2001; Bernard et al., 2004; Frick et al., 2004)
will provide stronger depolarization of this dendritic
area and increase the associated Ca2þ influx. As a
result, synaptic input paired with bAPs will experi-
ence regional differences in depolarization/Ca2þ

influx, due to the decline and frequency-dependent
attenuation of bAP amplitudes. Furthermore, this
may influence the magnitude, direction, and the
spatial extent of synaptic plasticity (Magee and
Johnston, 1997; Markram and Sakmann, 1997;
Sourdet and Debanne, 1999; Bi and Poo, 2001;
Sjöstrom and Nelson, 2002; Watanabe et al., 2002).
The spatial extent of dendritic intrinsic plasticity
could provide a means for spreading such forms of
metaplasticity to neighboring synapses or branches,
eventually requiring compensatory homeostatic
mechanisms (Abbott and Nelson, 2000; Turrigiano
and Nelson, 2000; Marder and Prinz, 2002).

CONCLUSIONS AND PERSPECTIVE

In summary, there are numerous examples of activ-
ity-dependent regulations of the intrinsic excitability
of neurons in vivo and in vitro, stressing the impor-
tance of an additional dimension for plasticity. This
plasticity might regionally regulate the properties or
expression levels of ion channels, for example, at
synaptic contacts, the parent dendrites or in the axon,
thereby altering the integrative properties of these
structures. Thus, the initiation, summation and propa-
gation of signals in the neuron will be shaped by
intrinsic plasticity, perhaps optimizing information
transfer and firing rates. Conversely, intrinsic plasti-
city could also potentially counteract, or exacerbate
pathological conditions. Many questions in this rela-
tively unexplored field are now open for investiga-
tion—on a mechanistic as well as functional level.
For example, what are the underlying induction and
expression mechanisms for alterations in intrinsic
excitability? How persistent is intrinsic plasticity, and
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what is its role in the behaving animal? To determine
how the various mechanisms of plasticity fulfill dif-
ferent roles, and at the same time cooperate in regu-
lating complex tasks such as development, adapta-
tion, and information storage, will be a great chal-
lenge for the future.

We thank Jeremy Rosenkranz, Melanie Ginger, Ray-
mond Chitwood, and Xixi Chen for comments on the manu-
script.
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